Limitar la búsqueda a ejemplares disponibles

Cubierta del libro
Autor Ambrosetti, Antonio. author.

Título An Introduction to Nonlinear Functional Analysis and Elliptic Problems [electronic resource] / by Antonio Ambrosetti, David Arcoya.

Publicación Boston : Birkhäuser Boston, 2011.
Descripción física XII, 199 p. 12 illus. online resource.
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
text file PDF rda
Colección Progress in Nonlinear Differential Equations and Their Applications ; 82
Progress in Nonlinear Differential Equations and Their Applications ; 82
Springer eBooks. Mathematics and Statistics
       Mostrar referencias similares
Contiene: Notation -- Preliminaries -- Some Fixed Point Theorems -- Local and Global Inversion Theorems -- Leray-Schauder Topological Degree -- An Outline of Critical Points -- Bifurcation Theory -- Elliptic Problems and Functional Analysis -- Problems with A Priori Bounds -- Asymptotically Linear Problems -- Asymmetric Nonlinearities -- Superlinear Problems -- Quasilinear Problems -- Stationary States of Evolution Equations -- Appendix A Sobolev Spaces -- Exercises -- Index -- Bibliography.
Resumen: This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems. By first outlining the advantages and disadvantages of each method, this comprehensive text displays how various approaches can easily be applied to a range of model cases. An Introduction to Nonlinear Functional Analysis and Elliptic Problems is divided into two parts: the first discusses key results such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, Leraý㓣hauder degree, critical point theory, and bifurcation theory; the second part shows how these abstract results apply to Dirichlet elliptic boundary value problems.  The exposition is driven by numerous prototype problems and exposes a variety of approaches to solving them. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
Materia Mathematics.
Ergodic theory.
Functional analysis.
Partial differential equations.
       Mostrar referencias similares
Functional Analysis.
       Mostrar referencias similares
Partial Differential Equations.
       Mostrar referencias similares
Dynamical Systems and Ergodic Theory.
       Mostrar referencias similares
Autor secundario Arcoya, David., author.
SpringerLink (Online service)
En Springer eBooks
OTRO SOPORTE Printed edition: 9780817681135
ISBN 9780817681142 978-0-8176-8114-2
ISBN/ISSN 10.1007/978-0-8176-8114-2 doi