Limitar la búsqueda a ejemplares disponibles

Cubierta del libro

Título Developments and Trends in Infinite-Dimensional Lie Theory [electronic resource] / edited by Karl-Hermann Neeb, Arturo Pianzola.

Publicación Boston : Birkhäuser Boston, 2011.
Descripción física VIII, 492 p. 9 illus. online resource.
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
text file PDF rda
Colección Progress in Mathematics ; 288
Progress in Mathematics ; 288
Springer eBooks. Mathematics and Statistics
       Mostrar referencias similares
Contiene: Preface -- Part A: Infinite-Dimensional Lie (Super-)Algebras -- Isotopy for Extended Affine Lie Algebras and Lie Tori -- Remarks on the Isotriviality of Multiloop Algebras -- Extended Affine Lie Algebras and Other Generalizations of Affine Lie Algebras ́㠁 Survey -- Tensor Representations of Classical Locally Finite Lie Algebras -- Lie Algebras, Vertex Algebras, and Automorphic Forms -- Kać㍯ody Superalgebras and Integrability -- Part B: Geometry of Infinite-Dimensional Lie (Transformation) Groups -- Jordan Structures and Non-Associative Geometry -- Direct Limits of Infinite-Dimensional Lie Groups -- Lie Groups of Bundle Automorphisms and Their Extensions -- Gerbes and Lie Groups -- Part C: Representation Theory of Infinite-Dimensional Lie Groups Functional Analytic Background for a Theory of Infinite- Dimensional Reductive Lie Groups -- Heat Kernel Measures and Critical Limits -- Coadjoint Orbits and the Beginnings of a Geometric Representation Theory -- Infinite-Dimensional Multiplicity-Free Spaces I: Limits of Compact Commutative Spaces -- Index.
Resumen: This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Part (A) is mainly concerned with the structure and representation theory of infinite-dimensional Lie algebras and contains articles on the structure of direct-limit Lie algebras, extended affine Lie algebras and loop algebras, as well as representations of loop algebras and Kać㍯ody superalgebras. The articles in Part (B) examine connections between infinite-dimensional Lie theory and geometry. The topics range from infinite-dimensional groups acting on fiber bundles, corresponding characteristic classes and gerbes, to Jordan-theoretic geometries and new results on direct-limit groups. The analytic representation theory of infinite-dimensional Lie groups is still very much underdeveloped. The articles in Part (C) develop new, promising methods based on heat kernels, multiplicity freeness, Banach́㌩é㐯isson spaces, and infinite-dimensional generalizations of reductive Lie groups. Contributors: B. Allison, D. Belti¿Đă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf.
Materia Mathematics.
Algebraic geometry.
Group theory.
Topological groups.
Lie groups.
       Mostrar referencias similares
Topological Groups, Lie Groups.
       Mostrar referencias similares
Group Theory and Generalizations.
       Mostrar referencias similares
       Mostrar referencias similares
       Mostrar referencias similares
Algebraic Geometry.
       Mostrar referencias similares
Autor secundario Neeb, Karl-Hermann., editor.
Pianzola, Arturo., editor.
SpringerLink (Online service)
En Springer eBooks
OTRO SOPORTE Printed edition: 9780817647407
ISBN 9780817647414 978-0-8176-4741-4
ISBN/ISSN 10.1007/978-0-8176-4741-4 doi