LEADER 00000nam a22004935i 4500 
001    978-3-0348-0110-2 
003    DE-He213 
005    20150520200144.0 
007    cr nn 008mamaa 
008    110317s2011    sz      s    |||| 0|eng d 
020    9783034801102|9978-3-0348-0110-2 
024 7  10.1007/978-3-0348-0110-2|2doi 
040    ES-ZaU 
072  7 PBKF|2bicssc 
072  7 MAT037000|2bisacsh 
082 04 515.724|223 
100 1  Colombo, Fabrizio.|eauthor. 
245 10 Noncommutative Functional Calculus|h[electronic resource] 
       :|bTheory and Applications of Slice Hyperholomorphic 
       Functions /|cby Fabrizio Colombo, Irene Sabadini, Daniele 
       C. Struppa. 
260  1 Basel :|bSpringer Basel,|c2011. 
300    VI, 222 p.|bonline resource. 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
347    text file|bPDF|2rda 
490 1  Progress in Mathematics ;|v289 
490 0  Springer eBooks.|aMathematics and Statistics 
505 0  1 Introduction -- 2 Slice monogenic functions -- 3 
       Functional calculus for n-tuples of operators -- 4 
       Quaternionic Functional Calculus -- 5 Appendix: The Riesz-
       Dunford functional calculus -- Bibliography -- Index. 
520    <i>This book presents a functional calculus for <i>n</i>-
       tuples of not necessarily commuting linear operators. In 
       particular, a functional calculus for quaternionic linear 
       operators is developed. These calculi are based on a new 
       theory of hyperholomorphicity for functions with values in
       a Clifford algebra: the so-called slice monogenic 
       functions which are carefully described in the book. In 
       the case of functions with values in the algebra of 
       quaternions these functions are named slice regular 
       functions.</i> <br>  <p>Except for the appendix and the 
       introduction all results are new and appear for the first 
       time organized in a monograph. The material has been 
       carefully prepared to be as self-contained as possible. 
       The intended audience consists of researchers, graduate 
       and postgraduate students interested in operator theory, 
       spectral theory,  hypercomplex analysis, and mathematical 
       physics.</p>. 
650  0 Mathematics. 
650  0 Functional analysis. 
650  0 Functions of complex variables. 
650  0 Operator theory. 
650 14 Mathematics. 
650 24 Operator Theory. 
650 24 Functional Analysis. 
650 24 Functions of a Complex Variable. 
700 1  Sabadini, Irene.,|eauthor. 
700 1  Struppa, Daniele C.,|eauthor. 
710 2  SpringerLink (Online service) 
773 0  |tSpringer eBooks 
776 08 |iPrinted edition:|z9783034801096 
830  0 Progress in Mathematics ;|v289 
856 40 |zAcceso al texto completo|uhttp://dx.doi.org/10.1007/978-
       3-0348-0110-2